
Буровые установки, оборудование и сооружения

Рассматриваемые вопросы

- 1. Буровые установки и их основные элементы
- 2. Оборудование для бурения скважин
- 3. Виды глубокого бурения
- 4. Ударно-механическое бурение

Буровые установки и их основные элементы

Буровая установка технологический комплекс механизмов, машин, аппаратов, устройств вспомогательного оборудования, необходимого для решения определенного класса технологических задач

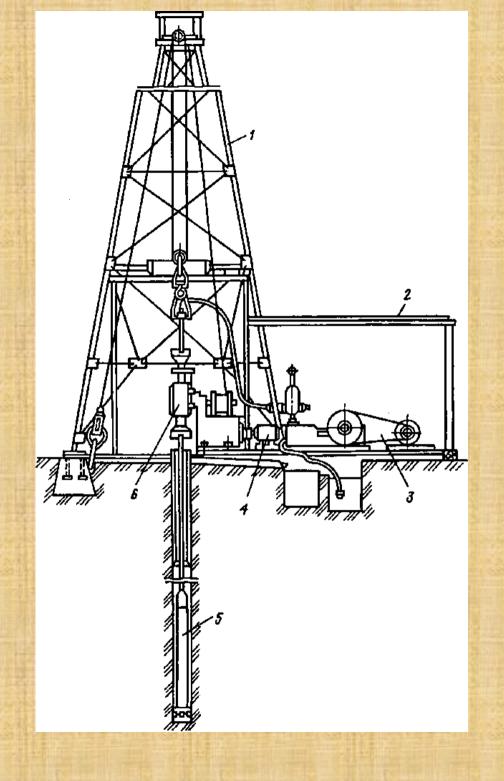
По целевому назначению буровые установки классифицируются:

- 1. Для геологической съемки, картирования и поисков полезных ископаемых;
- 2. Для разведки твердых полезных ископаемых;
- 3. Для бурения взрывных сейсмических скважин;
- 4. Для проходки инженерногеологических, гидрогеологичесих и структурно-поисковых скважин.

По способу воздействия на забой скважины породоразрушающего инструмента:

- > установки для вращательного бурения;
- > установки для ударного бурения;
- > установки для ударно-вращательного бурения.

По транспортабельности


- ф разборные переносные);
- ***** передвижные;
- * самоходные.

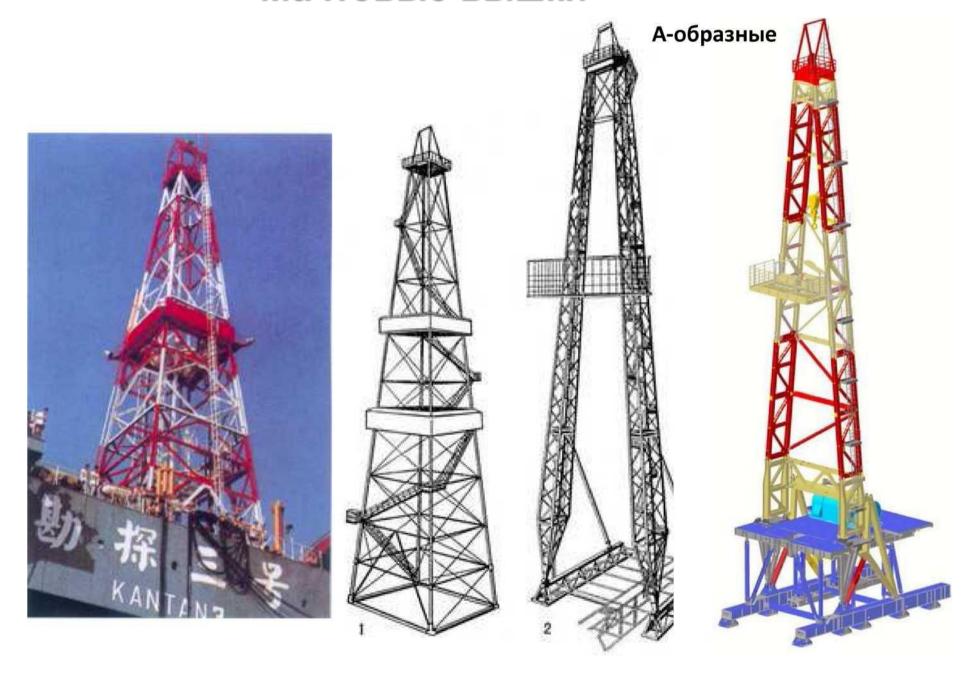
Элементы буровых установок

Все буровые установки имеют однотипное, но разное по своим характеристикам буровое и энергетическое оборудование которое можно разделить на две группы:

- оборудование для спуска и одъема бурильной колонны (подъемное оборудование)
- оборудование для бурения скважин

- 1 Буровая вышка
- 2 Превышенное сооружение
- 3 Буровой насос
- 4 Основной привод
- 5 Буровой снаряд
- 6 Оборудование для СПО
- 7 Подвышенное основание
- **8** Противовыбросовое оборудование

Оборудование для спуска и подъема бурильной колонны:

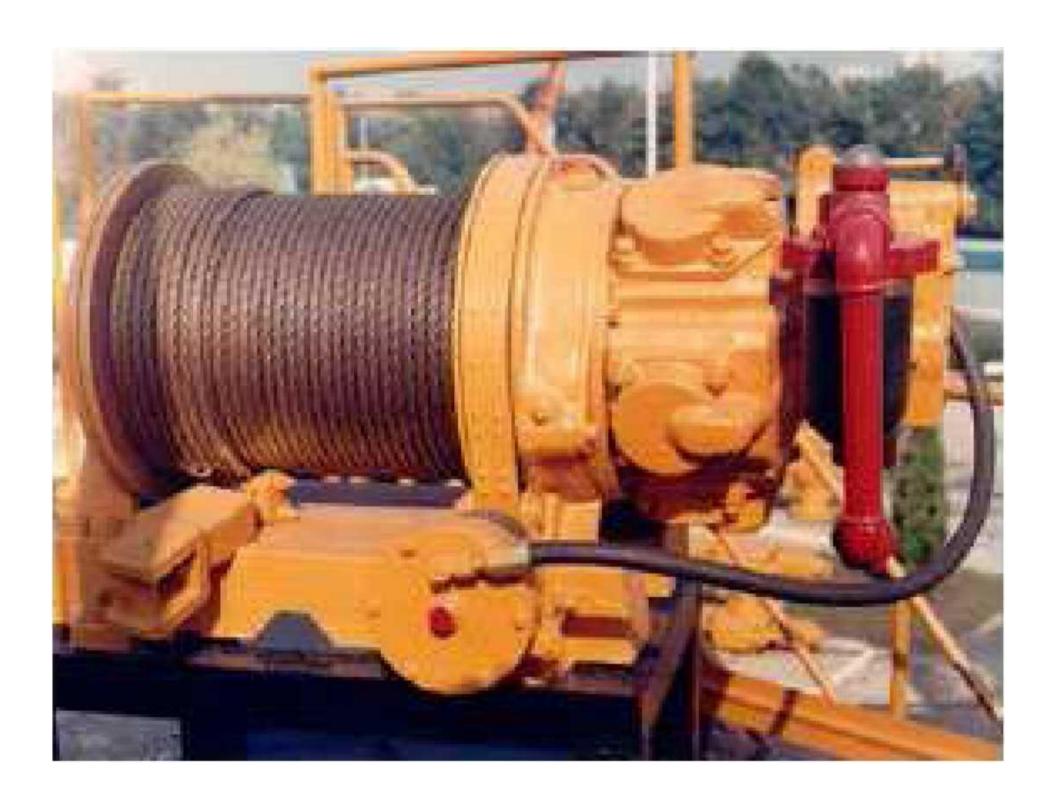

- **Буровая вышка**,
- **Буровая лебедка,**
- □ Талевая (полиспастовая) система.

Буровые вышки

Буровая вышка предназначена для подъема и спуска бурильной колонны, установки обсадных труб в скважину, удержания бурильной колонны на весу во время бурения, а также для размещения в ней талевой системы, бурильных труб (свечей) и другого оборудования.

Применяются металлические вышки **башенного** и **мачтового** (в основном А-образного) типов высотой до 60 м.

Мачтовые вышки



Буровые лебедки

Буровая лебедка предназначена для подъема и спуска бурильной колонны в скважину, удержания ее на весу или медленного опускания (подачи) в процессе бурения, свинчивания и развинчивания труб, спуска обсадных колонн и других вспомогательных работ.

Лебедка имеет четыре скорости подъема, состоит из рамы, коробки передач и трех валов.

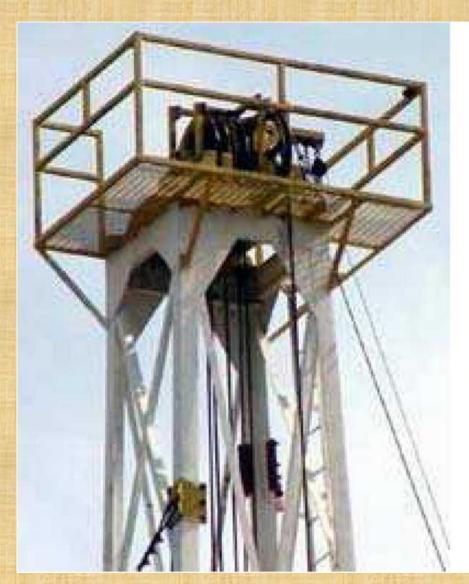
Барабан лебедки имеет тормоз с пневматическим и ручным управлением

Талевая система

Талевая (полиспастовая) система буровых установок предназначена для преобразования вращательного движения барабана лебедки в поступательное (вертикальное) перемещение крюка и уменьшения нагрузки на ветви каната.

Талевая система состоит из:

- кронблока,
- стального талевого каната
- подвижного талевого блока с подъемным крюком.

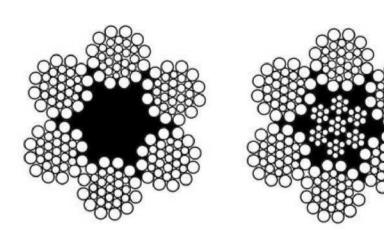

Кронблок

Кронблок (неподвижный блок полиспаста) - неподвижная часть талевой системы - представляет собой раму, на которой смонтированы оси и опоры со шкивами: на оси кронблока посажены 5 канатных роликов.

Кронблок устанавливается на верхней раме вышки

Иногда рама выполняется за одно целое с верхней частью вышки.

Кронблок

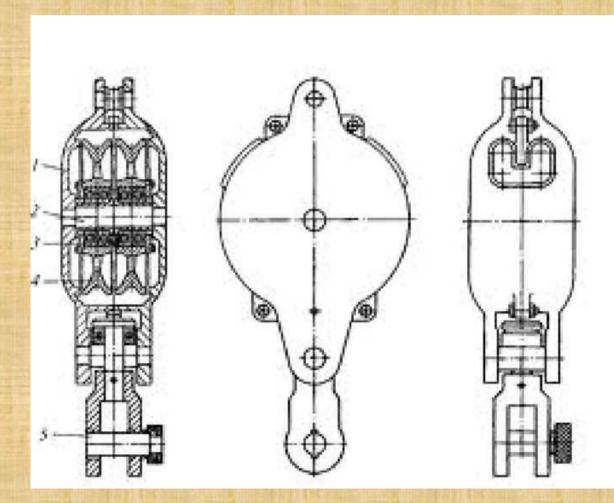

Талевый стальной канат

Талевый стальной канат - это часть талевой системы, предназначенной для поднятия и удерживания на весу бурового инструмента огромного веса.

Состоит из шести прядей проволок из высококачественной стали диаметром 1,0-2,4 мм и металлического или пенькового сердечника, пропитанного смазкой. Проволочки свиты в пряди по спиралям. Если направление прядей в канате совпадает с направлением проволочек в пряди, свивка каната называется прямой.

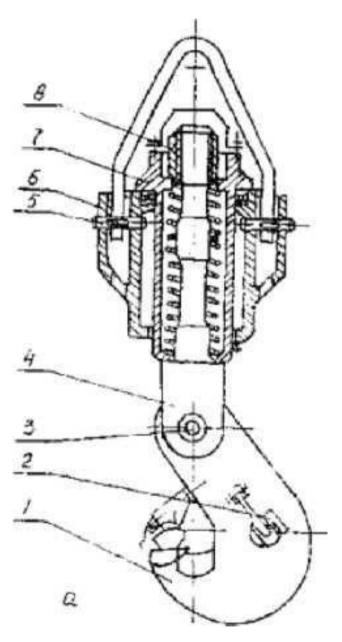
В канатах крестовой свивки эти направления перекрещиваются. В бурении обычно применяют канаты крестовой свивки.

Талевый стальной канат



Подвижный талевый блок

Талевый блок представляет собой сварной корпус (щеки). В щеках неподвижно закреплена ось, на которой, как и в кронблоке, установлены на роликовых подшипниках четыре канатных ролика.

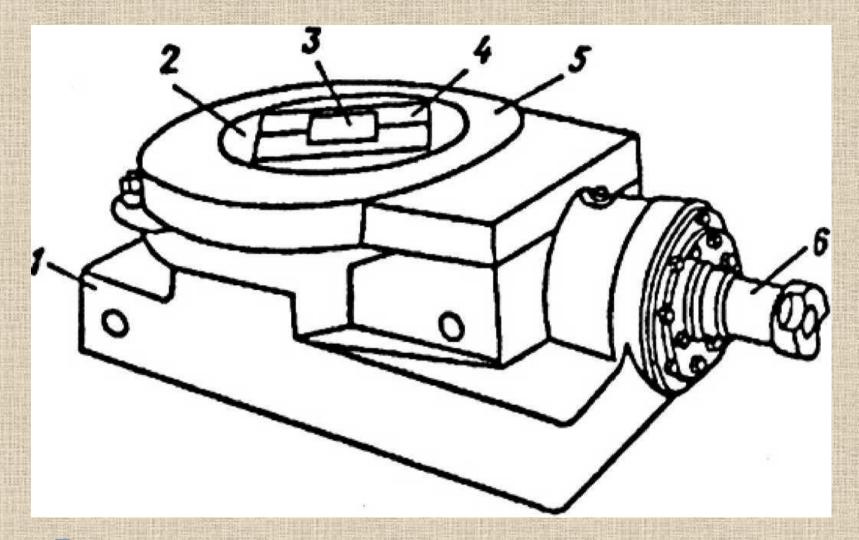


Буровые крюки

Буровые крюки изготовляют в виде отдельных крюков или крюков, соединенных с талевым блоком (крюкоблоки).

Крюк посредством серьги соединяется с талевым блоком и предназначен он для подвешивания бурильных труб при помощи элеватора в процессе их спуска и подъема и для подвешивания бурильных труб при помощи вертлюга во время бурения.

Буровые крюки


2. ОБОРУДОВАНИЕ ДЛЯ БУРЕНИЯ СКВАЖИН

- ротор,
- вертлюг с буровым шлангом,
- буровые насосов,
- силовой привод, (забойный двигатель).

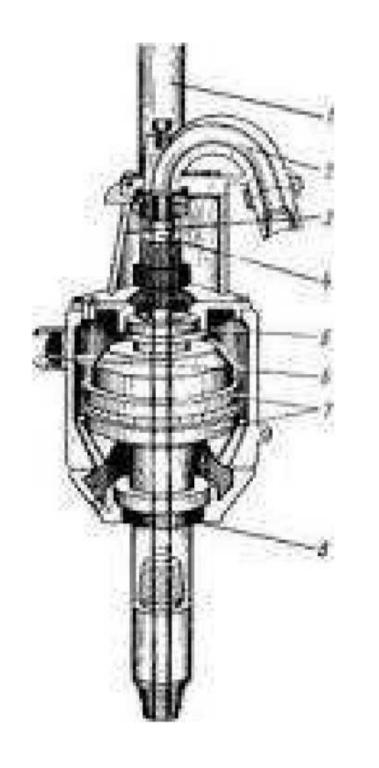
POTOP

Ротор служит для передачи вращения колонне бурильных труб, для поддержания на весу бурильной колонны во время спуско-подъемных работ и поддержания на весу обсадной колонны при спуске ее в скважину.

При турбинном бурении и бурении с электробуром ротор воспринимает реактивный момент, возникающий при работе двигателя в скважине, а также используется для периодического проворачивания бурильной колонны при спускоподъемных операциях.

Ротор состоит из следующих основных узлов

1 - станина; 2 — стол с закрепленным зубчатым венцом; 3 — зажимщики; 4 — вкладыши; 5 — кожух; 6 — вал привода


Вертлюг

Вертлюг применяют для соединения талевой системы с бурильной колонной.

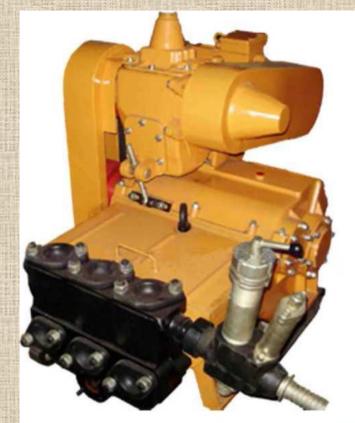
Кроме того он воспринимает вес колонны бурильных труб без ограничения ее вращательного движения и обеспечивает подачу промывочной жидкости во вращающиеся бурильные трубы.

Вертлюг состоит из двух узлов - системы вращающихся и неподвижных деталей. Неподвижную часть вертлюга подвешивают к подъемному крюку, а к вращающейся части подвешивают бурильную колонну

Вертлюг

БУРОВОЙ ШЛАНГ

Буровой шланг состоит из внутреннего рукава из нефтестойкой резины, оплетенного несколькими слоями прочной прорезиненной ткани, которые чередуются со стальными лентами, намотанными сплошными перекрывающимися слоями под углом 55 градусов


БУРОВОЙ НАСОС

Буровые насосы предназначены для подачи под давлением промывочной жидкости в скважину.

От буровых насосов промывочная жидкость по нагнетательной линии (манифольду) подается в гибкий резиновый буровой шланг и далее в вертлюг.

Буровые насосы для глубокого бурения должны обладать большой производительностью и развивать высокое давление, поэтому в глубоком бурении широкое распространение получили поршневые двухцилиндровые насосы двойного действия, обеспечивающие заданную производительность независимо от изменения гидравлических сопротивлений.

Буровые насосы

ПРИВОД БУРОВЫХ УСТАНОВОК

Буровые установки имеют несколько приводов:

главный привод предназначенный для лебедки, насоса и ротора. Для главного привода наиболее широко применяют дизельные двигатели типов Са-10, СА-20, СА-25, СА-30, В2-300А(1Д-12Б), В2-400А, В2-450 и М-601

дополнительный - для привода вспомогательных механизмов.

ДИЗЕЛЬНЫЙ ПРИВОД ТИПА СА

ДИЗЕЛЬНЫЙ ПРИВОД ТИПА В2

B2-500

